CURSOR TIER 3 SERIES

Industrial application

C87 CURSOR 87 TE X This publication provides unit and relevant component repair data, specifications, instructions and methodologies.

This publication has been drawn up for qualified and specialised personnel.

Before performing any operation check that the part relevant to the unit on which you must work is available along with all safety devices for accident-prevention, such as, goggles, helmet, gloves, shoes, etc. and hoisting and transporting equipment.

Operations are to be performed by following the indications included here, using the special equipment indicated and assuring proper repair, compliance with schedule and operator's safety requirements.

Each repair must aim to restore operating efficiency and safety in compliance with the FPT provisions.

FPT cannot be held liable for modifications, alterations or other interventions non authorised by FPT on the vehicle and if the unit is warranted the above mentioned interventions will cause its expiration.

FPT is not liable for repairing interventions.

FPT will provide further details required to carry out the interventions and all the instructions that are not included on this publication.

Data included in this publication may not be up-to-date therefore subject to Manufacturer's modifications that can be added at any time for technical or commercial purposes and also to meet new law regulations in other Countries.

If issues on this publication differ from what is actually noticed on the unit, please get in touch with the FPT network before starting any intervention".

It is forbidden to copy this text or any of its parts and all illustrations included.

Publication edited by FIAT Powerrtrain Technologies Mkt. Advertising & Promotion Viale dell'Industria, 15/17 20010 Pregnana Milanese Milano (Italy) Print **P2D32C006 E** - 2nd Ed. 06.2007 **CURSOR 87 TE X Series** Produced by:

B.U. TECHNICAL PUBLISHING Iveco Technical Publications Lungo Stura Lazio, 15/19 10156 Turin - Italy

CORRESPONDENCE BETWEEN TECHNICAL CODE AND COMMERCIAL CODE

Technical Code	Commercial Code
F2CE9685A*E001	CURSOR 87 TF X
F2CE0685B*E002	

	ARACTERISTICS	TECHNICAL CODE
	Туре	F2CE9685A*E001
A	Cycle	4-stroke Diesel engine
	Fuel feed	Turbocharged
	Injection	Direct
	No. of cylinders	6 in line
	Bore mm	117
	Stroke mm	135
	Total displacement cm ³	8717
Q	Compression ratio	1: 15.9 ± 0.8
	Europe market Max output kW (HP) rpm	263 (358) 1500
	Max. torque Nm (kgm) rpm	675 (70,7) 500
	SUPERCHARGING Turbocharger type	Intercooler Direct injection
	LUBRICATION	
(bar)	Oil pressure (warm engine) - idling bar - peak rpm bar COOLING Water pump control	Forced by gear pump, relief valve single action oil filter - - Liquid Through belt
	Thermostat - start of opening °C	85 ± 1.5

Furthermore, the users assembled by the setter shall always be in conformance to couple, power and number of turns based on which the engine has been designed.

			TECHNICAL CODE
	Туре		F2CE0685B*E002
	Cycle		4-stroke Diesel engine
	Fuel feed		Turbocharged
	Injection		Direct
	No. of cylinders		6 in line
	Bore	m	n 7
	Stroke	m	n 135
	∎ Total displacement	cm	3 8717
${\it Q}$	Compression ratio		1: 15.9 ± 0.8
	. (⟨₩ HP) pm	290 (401) 1800
	Max. torque 1 (Nm (kgm) pm	539 (156,9) 800
	SUPERCHARGING Turbocharger type	G	Intercooler Direct injection
bar	Oil pressure (warm engine) - idling b	oar oar	Forced by gear pump, relief valve single action oil filter - -
		al	Liquid
	Water pump contr Thermostat - start of opening	°C	Through belt 85 ± 1.5
IOTE Data, featu by FPT.			ly if the setter fully complies with all the installation prescriptions provide

		,	TECHNICAL CODE
		F2CE9685A*E001	
			F2CE0685B*E002
A	VALVE TIMING		
	opens before T.D.C.	А	17°
B	closes after B.D.C.	В	31°
C I	opens before B.D.C.	D	48°
	closes after T.D.C.	C	9°
D			
	For timing check		
	× {	mm	-
		mm	-
	Running		
	×	mm	0.35 to 0.45
		mm	0.55 to 0.65
	FEED		Bosch Common Rail with CRIN2 injectors and high pressure pump CP3.3
Ļ	Nozzle type		DLLA 137
	Injection order		I - 4 - 2 - 6 - 3 - 5
bar	Injection pressure	bar	
	Injector calibration	bar	1800
ੁੱਸ਼੍	,	- 201	

ASSEMBLY CLEARANCE DATA

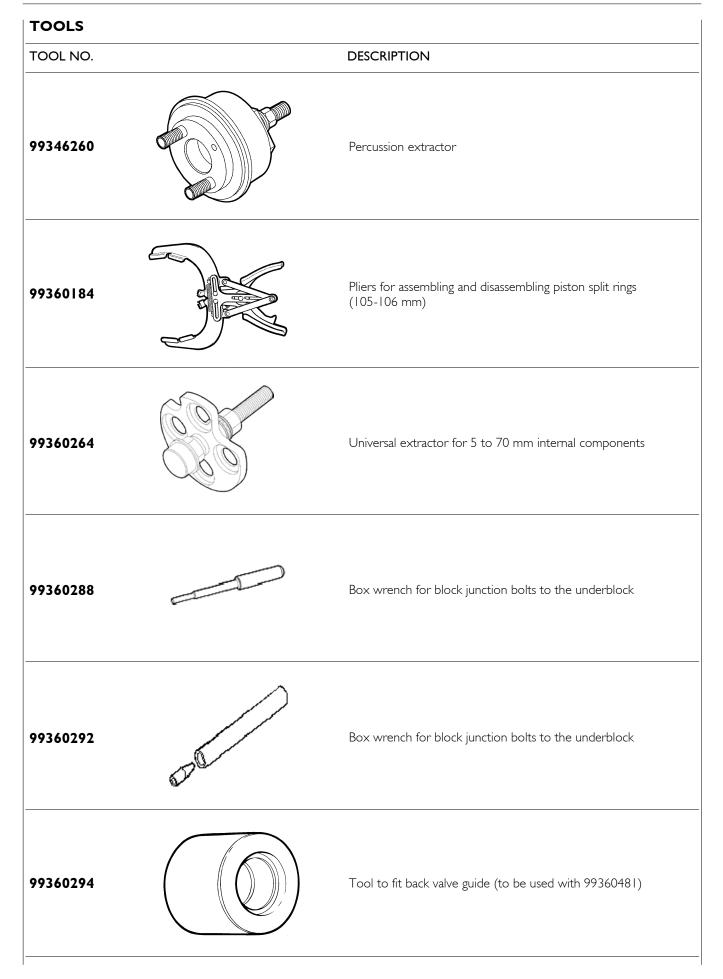
	Туре	CURSOR 87 TE X
CYLINDER BLOCK AND CRANKMECHANISM COMPONENTS		mm
	Bores for cylinder liners: upp	l 30.500 to 130.525
	Øl	l 129.510 to 129.535
	Cylinder liners: external diameter:	
L	upr Ø2 Iow	
Ø2	length	L 226,15 226.15
	Cylinder liners - crankcase bores upp low	
昌 >	External diameter 🖇	
~•	Cylinder sleeve	
	inside diameter Ø3,	A* 17.000 to 7.012
	inside diameter Ø3	B* 17.010 to 117.022
Selection class	Protrusion	X 0.035 to 0.065
	Pistons:	
		X 15
	external diameter Ø	
Ø2		IB II6.904 to II6.916 Ø2 52.010 to 52.016
	Piston - cylinder sleeve	
		A* 0.094 to 0.118
Selection class		B* 0.094 to 0.118
昌 <	Piston diameter 🖇	٥١ -
×	Pistons protrusion	X 0.873 to 1.117
Ø3	Gudgeon pin 🛛 🗘	51.994 to 52.000
- 	Gudgeon pin - pin housir	0.010 to 0.022

	Туре	CURSOR 87 TE X
	Туре	mm
		3,120 ÷ 3,140
	×I	3.120 to 3.140
	Piston ring grooves X2	2.550 to 2.570
	×3	4.020 to 4.040
	Piston rings:	
	trapezoidal seal SI	3.000
	lune seal S2	2.470 to 2.500
× S 3	milled scraper ring	
	with slits and internal spring S3	3.970 to 3.990
	spring S3	
		_
	Piston rings - grooves 2	0.050 to 0.100
_ 	3	0.030 to 0.070
<u></u>	Piston rings	-
	Piston ring end gap	
→ < X2	in cylinder liners	
	×I	0.3 to 0.4
×3	X2	0.60 to 0.75
\bigcirc	X3	0.35 to 0.65
	Small end bush housing	
() Ť ØI	Ø	55.700 to 55.730
~ ~ ·		
	Big end bearing housing Ø2	85.987 to 86.013
() ↓ Ø 2	Housing 62	
	Selection classes $\begin{cases} 1\\ 2 \end{bmatrix}$	85.987 to 85.996 85.997 to 86.005
	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	86.006 to 86.013
Ø 4	Small end bush diameter	
	outside Ø4	55.780 to 55.820
	inside 🗳 Ø3	52.015 to 52.030
/ \	Big end bearing shell S	
<u> </u>	Red	1.994 to 2.002
	Green Yellow ●	2.002 to 2.010 2.010 to 2.018
		0.05 to 0.08
	Small end bush - housing	
	Piston pin - bush	0.015 to 0.036
昌 >	Big end bearing	0.127 - 0.254 - 0.508
\bigcirc	Connecting rod weight A	g
/ \	A	3450 to 3470
	Class B	3471 to 3490
		3491 to 3510

• Fitted in production only and not supplied as spares

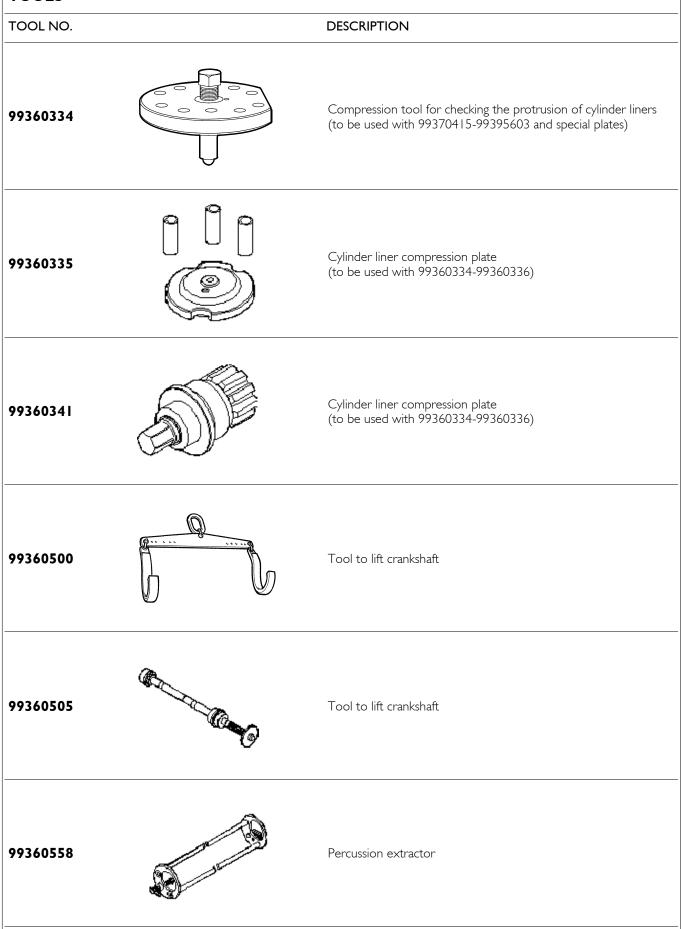
	т.	CURSOR 87 TE X
	Туре	mm
	Measuring dimension X	125
	Max. connecting rod axis misalignment	
	tolerance	0.08
	Main journals Øl - nominal	92.970 to 93.000
	- class l - class 2	
	- class 3 Crankpins Ø2	
	- nominal - class I	81.915 to 81.945 81.915 to 81.925
	- class 22 - class 33	
SI S2	Main bearing shells S I Red	2.968 to 2.978
	Green Yellow*	2.978 to 2.988 2.988 to 2.998
	Big end bearing shells S2 Red	1.994 to 2.002
	Green Yellow*	2.002 to 2.010 2.010 to 2.018
Ø3	Main bearing housings Ø3 - nominal	99.000 to 99.030
	- class l - class 2	
	- class 3 Bearing shells -	99.020 to 99.030 0.050 to 0.090
	main journals Bearing shells -	0.040 to 0.080
昌 <	big ends Main bearing shells Big end bearing shells	0.127 - 2.254 - 0.508 0.127 - 2.254 - 0.508
		0.127 - 2.234 - 0.300
	Main journal, thrust bearing XI	39.96 to 40.04
	Main bearing housing,	
X2	thrust bearing X2	38.94 to 38.99
×3	Thrust washer halves X3	3.38 to 3.43
	Crankshaft end float	0.10 to 0.30
	Alignment 👔 🚞 I - 2	
	Ovalization	
	Taper	
* Fitted in production	n only and not supplied as spa	res

	Туре	CURSOR 87 TE X
	- VALVE TRAIN	mm
	Valve guide housings in cylinder head Ø1	12.9800 to 12.997
	Valve guide Ø2	8.023 to 8.038 3.0 2 to 3.025
- CP	Valve guides - housings in the cylinder heads	0.015 to 0.045
昌 >	Valve guide	0.2 - 0.4
	Valves:	
	⊂∑	7.970 to 7.985 60° 30′ ± 7′ 30″
	$ \begin{array}{c} $	7.970 to 7.985 45° -u
	Valve stem and its guide	0.040 to 0.070
	Valve seat in head \swarrow ØI ØI	41.985 to 42.020 40.985 to 41.020
Ø 2	Outside diameter of valve seat; angle of valve seat in cylinder head:	0' -0,5'
	$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	42.060 to 42.075 60° - 30'
×	X ⊏∑ Recessing of valve	0.5 to 0.8 1.6 to 1.9
c\$-	Between valve seat and head	0.040 to 0.090
	*	


		CURSOF	87 TE X
	Туре	mm	
_	Valve spring height:	Α	В
	free height H under a load of:	70.77	-
H HI HI	$\frac{1}{2} \times 460 \pm 23 \qquad \text{HIA} \\ \frac{1}{2} \times 460 \pm 22 \qquad \text{HIB} $	5	1
	N 740 ± 33 H2A N 731,4 ± 42 H2B	3	9
	Injector protrusion X	l.2 t	o 1.5
	Camshaft bushing housing		
$ \begin{array}{c c} & & & \\ &$	in the cylinder head: I ⇒ 7 Ø	69.000 t	o 69.030
	Camshaft bearing journals: $ \Rightarrow 7$ Ø	64.924 t	o 64.080
Ø	Outer diameter of camshaft bushings: Ø	69.090 t	o 69.130
Ø	Inner diameter of camshaft bushings: Ø	65.080 t	o 65.116
	Bushings and housings in the cylinder head	0.060 t	o 0.130
	Bushings and bearing journals Cam lift:	0.100 t	o 0.192
н		7.4	034
\bigcirc	$\mathbf{\mathbf{b}}$	8.2	108
	Rocker shaft Ø1	31.964 t	o 31.980

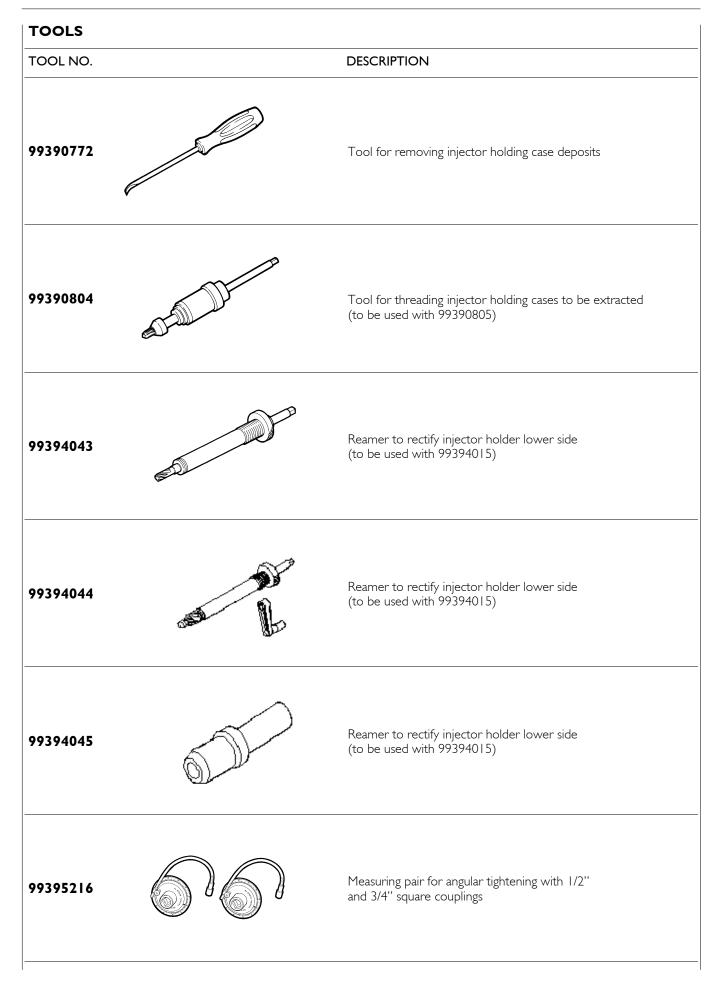
CURSOR 87 TE X SERIES ENGINES

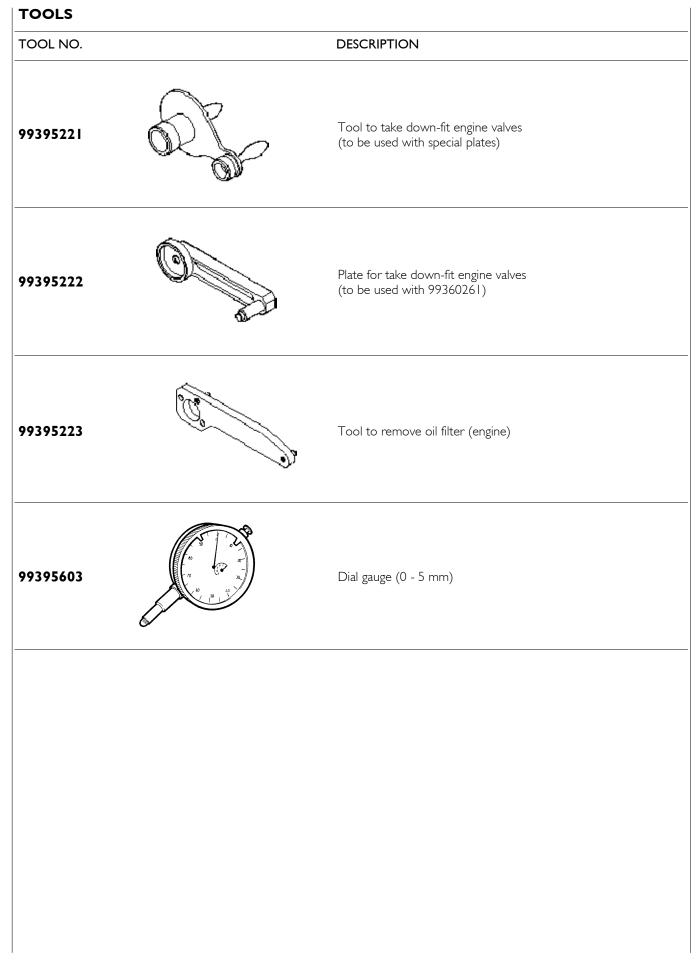
	Turne	CURSOR 87 TE X	
	Туре	mm	
	Bushing housing in rocker arms		
		32.025 to 32.041	
Ø	\succ	32.025 to 32.041	
	Between bushings and housings		
_∽⊐		0.045 to 0.077	
v	\succ	0.045 to 0.077	
TURBOCHARGER			
Туре		HX55	
End float		-	
Radial play		-	

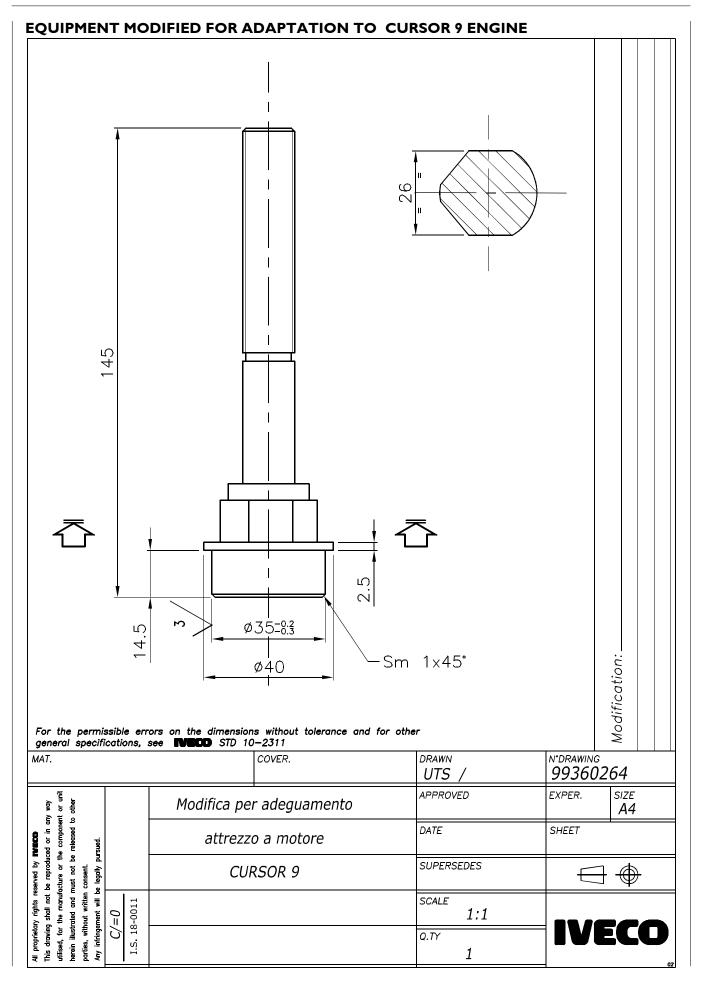

TOOLS

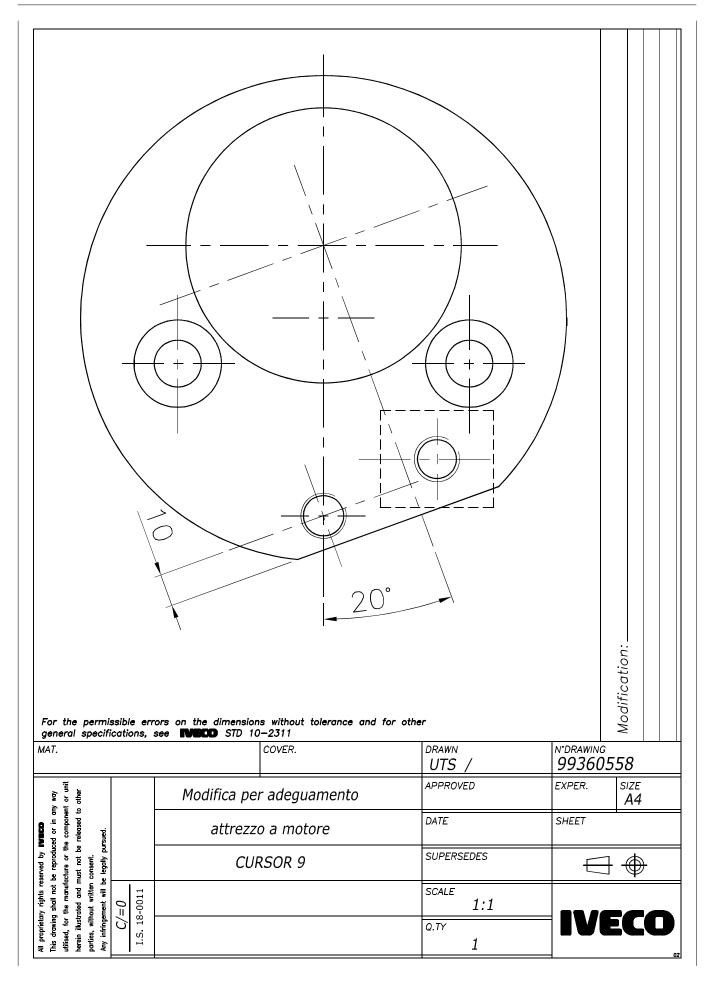
TOOLS	
TOOL NO.	DESCRIPTION
99322230	Rotary telescopic stand (range 2000 daN, torque 375 daNm)
99331043	Tool to rotate engine flywheel (to be used with 99360325)
99340051	Extractor for crankshaft front gasket
99340054	Extractor for crankshaft rear gasket
99342149	Extractor for injector-holder
99346245	Tool to install the crankshaft front gasket

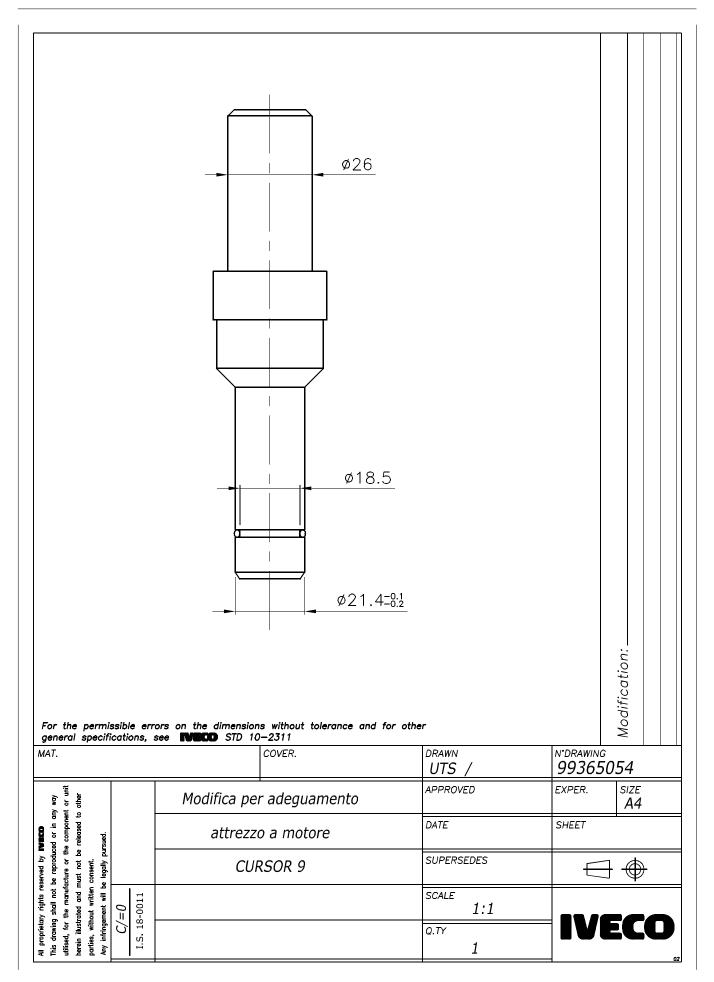
Base - June 2007


TOOLS




TOOLS TOOL NO. DESCRIPTION 99360585 Swing hoist for engine disassembly assembly ARMAD BE Belt to insert piston in cylinder liner (60 - 125 mm) 99360605 99360612 Tool for positioning engine P.M.S. 99360613 Tool for timing of phonic wheel on timing gear 99360703 Tool to stop cylinder liners 99360706 Tool to extract cylinder liners (to be used with specific rings)


TOOLS TOOL NO.	DESCRIPTION
99360724	Ring (135 mm) (to be used with 99360706)
99361042	Tool to take down-fit engine valves (to be used with special plates)
99365054	Tool for injector holder heading
99368542	Tool to take down-fit engine valves (to be used with special plates)
99368554	Tool to take down-fit engine valves (to be used with special plates)
99368555	Tool to take down-fit engine valves (to be used with special plates)


TOOLS		
TOOL NO.		DESCRIPTION
99368556		Tool to take down-fit engine valves (to be used with special plates)
99368558		Tool to take down-fit engine valves (to be used with special plates)
99370415		Base supporting the dial gauge for checking cylinder liner protrusion (to be used with 99395603)
99389833	C	Base supporting the dial gauge for checking cylinder liner protrusion (to be used with 99395603)
99389834	A A A A A A A A A A A A A A A A A A A	Torque screwdriver (I -6 Nm) for calibrating the injector solenoid valve connector check nut
99390310		Valve guide sleeker

